RICCIUS+SOHN

DDC-Regel U N I T 9X kompakt Operating Manual Part 1

release 2.1

This operating manual consists of two parts:

Part 1: General information

Construction, operation, mounting, installation, initialisation, maintenance, error messages, technical data (relevant for all types of controller)

Part 2: type relevant information

Control elements, system diagrams, terminal diagrams (relevant only for a specific type of controller)

Note on safety:

Before removing the controller from the terminal socket:

Switch off main voltage!

Table of contents

0	introd	uction	5
1	constr	uction	6
	1.1 1.2 1.3 1.4 1.5	Front view Control elements Control elements of the service level Rear view Terminal socket	6 6 7 8 9
2	Opera	tion	10
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	Standard display Adjustment of a set point 2.2.1 Adjustment of the domestic hot water temperature 2.2.2 Adjustment of the room temperature Selecting the operating mode Overtime Get an overview of the main parameters Help button Chimney sweep button R+S Remote control devices Access code Time Date Occupancy times Key combinations	10 11 11 12 13 14 15 16 17 18 19 20 21 23
3	Mount	ing	24
	3.1 3.2 3.3 3.4	Wall mounting Mounting inside of the control panel 3.2.1 Mounting in the door of the control panel 3.2.2 Mounting on a mounting plate on the back of the control panel Installation of the interface card Put in the battery	24 25 25 26 27 28
4	Install	ation	29
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	In general Power supply Sensor input Pumps Valves and mixers R+S remote control device with CAN-interface M-bus interface personal computer / R+S control station Modem R+S Bus (control station / UP)	29 30 31 32 33 34 35 36 38 39

Initialisation

5

	5.1	initialising interfaces	42
		5.1.1 SSK	42
		5.1.2 CAN-interface	42
		5.1.3 M-Bus interface	42
	5.2	System diagram	43
	5.3	further adjustments	44
	5.4	Functional test	45
		5.4.1 Sensors	45
		5.4.2 Pumps, valves, motors and mixers	45
	5.5	Trend	46
	5.6	Service interface	47
6	main	tenance	48
7	error	messages	49
8	Tech	nical data	50
App	endix		53
••	Appen	ndix A: factory setting	54
	Appen	ndix B: type of heating system	56
	Appen	ndix C: CAN-remote controls and CAN-room sensors	57
	Appen	ndix D: M-Bus heat meter	58
	Appen	ndix E: drilling template for wall mounting	59

0 introduction

With the **DDC-Regel** UNIT **9X kompakt** you acquired a particularly capable and flexible heating controller for an exceptionally good price/performance ratio.

The controllers of the RU product group 9X compact are – depending on the type of controller - suitable for district heating or burner plants with up to two heating circuits and with a domestic hot water circuit for all possible DHW systems. The controller RU 98.1K-111 in addition can control a solar circuit for the DHW heating.

The controllers are designed as simple operable stand-alone-controllers for one and two family houses. But they can be also used as a DDC-substation in plants with the DDC-system R+S unit PLUS, supporting the full functionality of the unit PLUS energy management with demand oriented control of the energy source, 15-stage priority for load drop and optimisation of the system flow temperature.

These are some of the important features of the product group RU 9X kompakt:

Easy operation

- Potentiometers for the adjustment of the set points
- Plain text display
- Information button
- Overtime buttons
- Chimney sweep button

Wide range of functions

- 50 preprogramed system diagrams
- reporting of errors, f.i. exceeding of the control deviations
- 4 yearly time switches, one can be used for free purposes
- Trend logging inside the controller

Energy management

- Control of the heat source through demand for a certain flow temperature and capacity of the heat source.
- Providing the right amount of the required energy and the optimal system flow temperature
- 15-stage priority for a load drop and the domestic hot water supply

Communication capability

- RS-232, RS485 interface card SSK for personal computer, modem (Remote control, maintenance, redirection of alarms), R+S control center via R+S Bus, optional
- CAN-Bus interface card for R+S remote control units, optional
- M-Bus interface card for heat meters, optional
- service interface in the front of the controller for printer and personal computer, standard

variety of mounting, protection

- wall mounting, panel-mounting or installations on a mounting plate
- spray water protection IP 54 (front-sided)
- standard cutout in control panel (138 x 92 DIN 43700)

1 construction

1.1 Front view

FRONT VIEW

1.2 control elements

look at the operating manual, part 2

1.3 control elements of the service level

(accessible after removing the door and the front scale)

1.4 rear view

1.5 terminal socket

part 1

2 operation

2.1 standard display

The standard display shows the most important information about the current operating state of the heating system.

The standard display is shown automatically after the controller is turned on or after a certain time when no key was pressed.

You can reach the standard display from every point or level in the menu by pressing the key TIMER twice.

*) not existent in heating systems without domestic hot water control, in the controller 98.1F-120.2 (diagram 74) it is replaced by heating circuit 1

**) is valid only with diagrams with 2 heating circuits

operating status of the domestic hot water circuit:

NOM.	Nominal operation, occupancy time
SUPP.	Supporting operation, non occupancy time
DOWN	Shut-down operation, frost protection acting
HEATUP	Warming up operation before begin of occupancy
THDIS	Thermal disinfection
FROST	The temperature has fallen below the frost protection limit
MANUAL	Manual operation

Domestic hot water (DHW) set point OT1

Display of the set point for the domestic hot water temperature set by the potentiometer for occupancy time 1

Heating circuit operating status:

NOM.	Nominal operation, occupancy time
REDUC	Reduced operation, non occupancy time (without room sensors)
SUPPORT	Supporting operation, non occupancy time (with room sensor)
DOWN	Shut-down operation, frost protection activated
HEATUP	Warming up operation, before begin of occupancy
FROST	room temperature has fallen below the frost limit or building protection limit
MANUAL	Manual operation

Room temperature set point NZ1:

Display of the set point of the room temperature set by the potentiometer for occupancy time 1

2.2 adjustment of the set point

2.2.1 adjustment of the set point for the domestic hot water temperature

2.2.2 adjustment of the room temperature

*) If you are using a system diagram with two heating circuits the set point set at the potentiometer is valid for both heating circuits; but the set point shown in the display is only valid for heating circuit 2 In the controller RU 98.1F-120.2 (diagram 74) the set points of both heating circuits can be adjusted separately.

2.3 selecting the operating mode

Set the main operation switch to the desired operation mode. f.i. <automatic>

Operating modes:

OFF	Control program is off, frost protection is activated
AUTO	Automatic operation, operating mode is determined by the timer
SUN	Nominal operation, occupancy time 1 (OT1)
MOON	Reduced operation, nonoccupancy time (NOT)
SUMMER	summer operation, heating is off, domestic hot water circuit is activated
MANUAL	Manual operation

2.4 overtime

The current occupancy time is extended by pressing the overtime button by approx. 2 hours. If the overtime button is pressed during the reduced operation (non occupancy time), an occupancy time of approx. 2 hours is inserted.

The overtime function is deactivated if you press the overtime button again.

If a R+S remote control is connected and assigned to the heating circuit or the domestic hot water circuit (look at chap. 2.8), the overtime function is activated by pressing the overtime button of the remote control.

2.5 get an overview of the main parameters

The menu "survey" contains the most important parameters like actual values, set points and status. Here you will in a very fast way an overview of the state of your heating system. Among other things you will find the temperatures of the sensors.

2.6 help button

Pressing the help button at any time will give you a quick help to the current parameter or the menu. In the standard display the help button will show you the type of controller and the chosen system diagram.

Sometimes you have to press the help button twice in order to get first the help text and then the parameter number on the display.

Through repeated pressing of the help button you return to the initial parameter or menu.

2.7 chimney sweep button

For maintenance and service operation the burner can be put manually into operation by pressing the chimney sweep button. This will give you approx. 15 minutes of operation with maximum power. After 15 minutes or after pressing the chimney sweep button again the controller switches back into the preceding operating state (only with controllers for burner plants RU 9x.1K-xxx).

2.8 R+S remote control

If a R+S remote control unit is connected, the set point can be adjusted and the overtime function can be activated. With the rocker switch of the remote control unit FDR-C(S) the operating mode of the assigned heating circuit or domestic hot water circuit can be chosen.

2.9 access code

Before setting the date, time, occupancy times, set points and other parameters it is necessary to enter the access code for the desired menu level, if access protection against unauthorized access is activated.

12:01:54 s NOM. 50°	sa 01.01.00 NOM. 20°
	press "OK"
12:01:54 sa access code	01.01.00 0000
	with the key "+","-" and "ok" you have to enter the access code. To make a correction press "+" and "-" simultaneously. (Default is 4444) *)
12:01:54 sa access code	01.01.00 4444
	press "OK" to finish. The controller is now ready for all kinds of changes (time, date, occupation time, setpoints etc.)
12:01:54 s NOM. 50°	sa 01.01.00 NOM. 20°

*) In case of a deviating access code please contact your service company.

2.10 time

Normally, only at the initial startup of the controller, it is necessary to set the system time. The interchangeable battery guarantees a power reserve of the clock of a minimum of 100 days in case the main voltage is shut down.

Before setting the time the access code must be entered. (Only if the access protection function is activated.)(look at chap. 2.9).

2.11 date

Normally, only at the initial startup of the controller, it is necessary to set the system date. The interchangeable battery guarantees a power reserve of the clock of a minimum of 100 days in case the main voltage is shut down.

Before setting the date the access code must be entered. (Only if the access protection function is activated.)(look at chap. 2.9).

09:43:54 sa NOM. 50°	a 01.01.00 NOM. 20°
	press the <clock> button for a longer period of time (min 3s)</clock>
global s ltime	systemclock
	press cursor <down> key</down>
global s pate	ystemclock
	press <ok></ok>
system cloc ↑curDate	k date 01.01.00
	enter day, month and year, using the buttons "+", "-" and "OK". Press "OK" to finsh your entry.
system cloc ↑curDate	k date 06.03.00
	you will return to the standard display after 10 minutes automatically or by pressing the button <clock> twice.</clock>
09:43:54 Mo NOM. 50°	06.03.00 NOM. 20°

2.12 occupancy times

Before setting the occupancy times the access code must be entered (Only if the access protection function is activated.)(look at chap. 2.9).

	enter the begin first the hours, the buttons "+", "OK" to finsh yo	ning of the occupation time, then the minutes, using , "-" and "OK". Press our entry.
timer HC1 mo beg OT1	weeklyPrg 08:30	
	press <down></down>	key
timer HC1 mo end OT1	weeklyPrg 22:00	
	enter the end of first the hours, the buttons "+" "OK" to finsh y	of the occupation time, then the minutes, using ', "-" and "OK". Press rour entry.
timer HC1 mo end OT1	weeklyPrg 18:45	
	if neccessary e occupation tim the week days	enter the other les for the rest of (if "group" < 3)
timer HC1 tu beg OT1	weeklyPrg 06:00	
	you will return t after 10 minute pressing the bu	to the standard display s automatically or by utton <clock> twice.</clock>
09:43:54 mo NOM. 50°	06.03.00 NOM. 20°	

2.13 key combinations

For specific control operations as well as short cuts to certain menus a combination of keys are available. Please press two buttons simultaneously in the second row of the keypad. To enter the menu level 1-5 the access code must be entered beforehand. (look at ch. 2.9).

A cold start is only possible, if the reset button is pressed (Remove front scale, look at ch. 1.3).

par no.	Menue item / function	key combinations					
		\forall		+	-	ОК	Reset
1.	global	•				•	
2.3.1	E-manager		•			•	
3.	interface			•		•	
4.	configuration				•	•	
5.	system diagram	•			•		
2.6	trend		•		•		
	deletion / default value			•	•		
	back one menue level		•	•			
	cold start	•	•				•

3 mounting

3.1 wall mounting

- Drill holes using the drilling template (look at appendix E), Caution! keep at least 25 mm minimum distance to the terminal socket of the neighboring controller.
- Attach plastic hoods to the cable entries of the terminal socket (plastic hoods 13,5 mm or 21 mm or use PG joints PG 9 or PG 16)
- Attach terminal socket to the wall, using the dowels and screws enclosed in a plastic back with the controller. Caution! Watch out for the marker "Open" (which means TOP) on the terminal socket.
- connect the electric cables (look at ch. 4)
- Install the interface card in the controller (look at ch. 3.3)
- Open and remove front door of the controller
- Remove front scale of the controller (lift front scale with a small screwdriver and pull, look at illustration 3-1)
- Slide battery into the battery chamber (look at ch. 3.4)
- Attach the controllers onto the terminal socket
- Tighten bolt (in the middle of the controller) with a cross-point screwdriver (look at ch. 1.3)
- Attach the front scale and put the door back in its place.
- Turn on the main voltage

To dismantle the controller proceed in reverse order.

Caution! Before the disconnecting the controller from the terminal

socket you have to switch off the main voltage

Abb. 3-1 removing the front scale

3.2 mounting in a control panel

3.2.1 mounting in the door of a control panel

- Make a cutout (A 138 x 92 DIN 43700) into the door. Caution: keep at least 25 mm minimum distance to the cutout of a neighboring controller
- Install the interface card in the controller (look at ch. 3.3)
- Open and remove the front door of the controller
- Remove front scale of the controller (lift front scale with a small screwdriver and pull, look at illustration 3-1)
- Slide battery into the battery chamber (look at ch. 3.4)
- Set the controllers into the cutout of control panel and tighten the two sliders until the controller is pressed into the cutout (look at ch. 1.3)
- Caution: watch for a correct seat of the seal at the back of the front of the controller
- Attach plastic hoods to the cable entries of the terminal socket (plastic hoods 13,5 mm or 21 mm or use PG joints PG 9 or PG 16)
- connect the electric cables (look at ch. 4)
- Attach the terminal socket onto the controller
- Tighten bolt (in the middle of the controller) with a cross-point screwdriver (look at ch. 1.3)
- Attach the front scale and put the door back in its place, watch for the correct setting of the door seal.
- Turn on the main voltage

To guarantee the front-sided protection level IP54 watch out for a correct setting of the seals!

To dismantle the controller proceed in reverse order.

3.2.2 mounting on a mounting plate on the back of the control panel

- Attach plastic hoods to the cable entries of the terminal socket (plastic hoods 13,5 mm or 21 mm or use PG joints PG 9 or PG 16)
- Engage the terminal socket on the mounting plate in the back of the control panel, using the catch spring mechanism (look at fig. 3-2)
- connect the electric cables (look at ch. 4)
- Install the interface card in the controller (look at ch. 3.3)
- Open and remove the front door of the controller
- Remove front scale of the controller (lift front scale with a small screwdriver and pull, look at illustration 3-1)
- Slide battery into the battery chamber (look at ch. 3.4)
- Attach the controller onto the terminal socket
- Tighten the bolt (in the middle of the controller) with a cross-point screwdriver (look at ch. 1.3)
- Attach the front scale and put the door back in its place, watch for the correct setting of the door seal.
- Turn on the main voltage

To dismantle the controller proceed in reverse order.

Abb. 3-2 mounting on a mounting plate

3.3 installing an interface card

If the RU **9X kompakt** was ordered with interface cards, they will be delivered separately and must be installed during the mounting of the controller. The interfaces can also installed at a later time without problems.

For the installation please proceed in the following order:

- Disconnect main voltage* Open and remove the front door of the controller
- Remove front scale of the controller (lift front scale with a small screwdriver and pull, look at illustration 3-1)
- Loosen the bolt that holds the controller connected to the terminal socket (look at ch. 1.3)
- Separate the controller and the terminal socket
- Removing plastic cap at the rear of the housing of the controller revealing the slots for the interface cards
- Unpack the interface card and slide it into the slot designated for the interface card. Caution! Watch out, that use the right slot for the right interface card. (look at ch. 1.4). The component side of the interface card must show to the middle of the casing (to the main fuse).
- Press the interface card slowly down into the slot until the edge of the integrated circuit board is flush with the side edge of the rack.
- Put the plastic cap back over the interface compartment, so that the lid of the plastic cap shows to the outside of the controller (not to the middle of the controller). (look at fig. 3-3).
- Attach the controller back onto the terminal socket (look at ch. 3.1 or 3.2), * Tighten the bolt (in the middle of the controller) with a cross-point screwdriver (look at ch. 1.3)
- Attach the front scale and put the door back in its place
- Turn on the main voltage
- Carry out the basic installations (look at ch. 5.1)

Caution! Don't install the interface card the wrong way, not into the wrong slot and don't use force! The plug-and-socket connectors will not function, if you plug and unplug the interface card to often (maximum 10 times).

RU9S.M RU9S.SSK RU9S.C(S)			plastic cap
	0	E	

Abb. 3-3 correct setting of the plastic cap

3.4 Put in the battery

To keep the system clock running during power failure a battery is necessary. (item-nr. 1220 1000). The battery guarantees a power reserve of approx. 100 days. To install the battery please carry out following instructions:

- Open and remove the front door of the controller
- Remove front scale of the controller (lift front scale with a small screwdriver and pull, look at illustration 3-1)
- Slide battery into the battery chamber next to the main operating mode switch (look at ch. 3.4)
- Attach the front scale and put the door back in its place

Caution possibility of a short circuit! Don't touch the battery with electrically conductive tools and not with your fingers!

Abb. 3-4 changing the battery

4 installation

4.1 in general

Warning ! The mounting and installation of the electric connections of the **RU 9X kompakt** requires special knowledge about mounting of electrotechnical plants EN 60204 (DIN of VDE 0100 / 0113) the knowledge of accident prevention rules and the specific rules for installation and initialisation. These tasks can only be carried out by qualified specialists.

- 4 For the connection of sensors only shielded wires should be used (Typ: Y(St)Y 2x2x0,8)
- 5 The shield should be connected with the reference potential (Ground of control panel) of the control panel or the terminal socket.
- 6 The cables of the sensors should be placed separately to cables with low voltage or high voltage.
- 7 To avoid troubles with the operation of the RU 9X kompakt in the area of low-voltage installations with raised electro-magnetic emission we recommend the installation of a R+S net filter (Type: NF1).
- 8 To protect the bus interface SSK against overvoltage we recommend the use of a R+S overvoltage protection module (Type: ÜSBUS).
- 9 If electronic power modules (for example frequency transformer) are used you should make sure, that you have a spatial separation between the RU **9X kompakt** and the electronic power modules.
- 10 All sensors and actuators available by R+S are synchronized with the RU **9X kompakt**. Only with the use of these units you can achieve the full capability of your RU **9X kompakt**.
- 11 The cross section of the cables at the terminals should be max. 2,5 mm2 (single-wire) and/or 1,5 mm2 (multi-wire).

part 1

4.2 main voltage

Abb. 4-1 connecting the main voltage

To guarantee shock protection in a mobile power net please note following following information:

Caution! Before separating regulator and terminal socket: Switch off main voltage

4.3 sensor inputs

The RU 9X kompakt is by default adjusted for the use of R+S M-sensors.

For special applications other sensors can be used (f.i. 0-10V Output (for example transformer), Pt1000-sensor (modified), potentiometer 0-10 kohms and signal contacts). The terminals 23 and 24 can be used for M-sensor inputs or as transistor outputs (Open Collector).

The terminal assignment depends on the chosen system diagram and can be found in the Operating Manual, part 2.

For the connection of sensors shielded, twisted pair cable (Type: Y(St)Y 2x2x0,8) should be used. The shield should be connected to the control panel or the terminal socket (ground of control panel). The cable of the sensors should be placed separately to cables with voltage or high voltage.

Abb. 4-2 connecting a sensor, transformer, poti or relais (example)

4.4 pumps

Pumps can be accessed directly via relay outputs of the RU **9X kompakt**, if the current consumption does not exceed 1A (Considering the starting current). Of the current consumption is higher, relays are necessary.

Electronic pumps can be run with a lower rotation speed during non occupancy time, if their input terminal "Ext. Min." is connected to the corresponding transistor output of the RU **9X kompakt** **). The terminal assignment depends on the chosen system diagram and can be seen in the Operating Manual, part 2

Abb. 4-3 connecting a pump (example)

*) terminal assignment in accordance with system diagram (look at Operatzing Manual, part 2) **) This cable should be positioned separately to the power lines.

4.5 valves and mixers

Valves and mixers with 3-point-actuators can be accessed drectly through the relay outputs of the RU **9X kompakt**, if the current consumption does not exceed 1A (Considering the starting current). If the current consumption is higher, relays are necessary.

The terminal assignment depends on the chosen system diagram and can be seen in the Operating Manual, part 2

Abb. 4-4 connecting an actuator or valve (example)

4.6 R+S remote control units with CAN-interface

If the RU **9X kompakt** is equipped with a CAN-interface card RU9S.C or RU9S.CS, you can connect up to two R+S remote control units with CAN-interface.

The CAN-interface card RU9S.CS can only be connected the remote control units FxRx-CS (high speed), the CAN-interface card RU9S.C can only be connected with the remote control units FxRx-C (low speed). The shorting plugs "A" and "B" at the back of the controller must be positioned according to the default factory setting(look at fig. 4-8). The bus addresses of the CAN-remote control units must be set by means of the shorting plugs or dip switches to 0 and/or 1 (look at fig. 4-5). Shielded telephon cable (Type: JY(St)Y x 2 x 0,8) or bus cable R+S KBUS-E or KBUS-F should be used. Permissible cable lengths are

bus cable	CAN-interface		
	RU9S.C S	RU9S.C	
JY(St)Y 2 x 2 x 0,8	150 m	25 m	
KBUS-E/KBUS-F	450 m	60 m	

Abb. 4-5 connecting a R+S remote control unit

4.7 M-Bus interface

If the RU **9X kompakt** is equipped with a M-Bus interface, up to two M-Bus counters can be connected.

The shorting plugs "A" and "B" at the rear of the regulator housing must be positioned corresponding to the default factory setting of the controller (look at fig. 4-8). The addresses of the M-Bus counters must be set to 1 and 2 (must be specified at time of order, look at fig. 4-6). Shielded telephone cable (Type: $JY(St)Y \times 2 \times 0.8$) should be used. Permissible cable lengths is 50 m.

4.8 personal computer / R+S control station

If the RU **9X kompakt** is equipped with an interface card RU9S.SSK, it can be connected with a personal computer and/or with a R+S control station. The connection can be done directly (RS-232, a maximum cable length is 15 m), via R+S-Bus (RS-485, a maximum length of 1200 m, look at ch. 4.10) or via a modem (look at ch. 4.9).

The cable K2PC9ST1 is used for the direct connection (look at fig. 4-7). The shorting plugs (Jumper) at the rear of the housing must be placed according to the default factory setting (look at fig. 4-8). Using the service adapter RU 9S.Adap you can do a PC link-up via the service interface at the front of the controller (look at ch. 5.6). No interface card is needed for that.

Abb. 4-7 connecting a PC

Abb. 4-8 position of the jumpers for PC or modem operation

4.9 modem

If the RU **9X kompakt** is equipped with an interface card RU9S.SSK, it can be connected with a personal computer and/or with a R+S control station. The connection can be done directly (RS-232, maximum cable length is 15 m), via R+S-Bus (RS-485, a maximum length of 1200 m, look at ch. 4.10) or via a modem. R+S offers a range of suitable modems, for example MOD 1-R, MOD 3-R and MOD 5-R. The cable K2MOD9ST1 is used to connect the modem to the controller. (look at fig. 4-9). The shorting plugs (Jumper) at the rear of the housing must be placed according to the default factory setting (look at fig. 4-8).

Abb. 4-9 connecting a modem

4.10 R+S Bus (control station / UP) 39

If the RU **9X kompakt** is equipped with an interface card RU9S.SSK, it can be connected with a personal computer and/or with a R+S control station. The connection can be done directly (RS-232, a maximum cable length is 15 m)(look at ch. 4.8), via R+S-Bus (RS-485, a maximum length of 1200 m) or via a modem (look at ch. 4.9).

127 R+S DDC-units via 4 lines can be connected to a personal computer/control station. A R+S interface converter SSU or SSU-1 transforms the signals between the R+S Bus and the pc/control station. (look at fig. 4-10). In case of a cable length of more than 100 m between two R+S DDC units a R+S bus power supply (105.SVB) is necessary.

Abb. 4-10 bus operation via a PC /BMS

Via the R+S-Bus it is also possible to connect your RU **9X kompakt** to a master-bus-interface of a unit PLUS controller, f.i. to transmit a temperature or capacity demand to the energy manager of the unit PLUS (look at fig. 4-11). In case of a cable length of more than 100 m between two R+S DDC units a R+S bus power supply (105.SVB) is necessary.

Abb. 4-11 bus operation via **unit PLUS**

The bus wiring between several RU **9X kompakt** inside a control panel is done according to fig. 4-12. The shorting plugs (jumper) have to be positioned according to fig. 4-13.

1) not set, if the control panel is at the end of the bus cable

4) use the R+S coarse and microfuse element ÜSBUS at danger of lightning

5) not set, if the cable length to the next SVB, SSU or SSKM is less than 100 m. In case of diagram type "A" and in a system with more than 32 members on the bus a 105.SVB is always necessary.

Abb. 4-13 position of the jumpers for R+S bus operation

5 initialisation

5.1 initialising the interfaces

If the controller has an interface card (look at ch. 3.3), they must be initialised. If no interface card is present you can skip this section and go to the next chapter. (look at 5.2).

5.1.1 SSK

If the interface card RU9S.SSK for personal computer, modem and bus operation is present (look at ch. 3.3) it has to be initialised in the following way:

- The shorting plugs (jumper) must be positioned correctly (look at ch. 4.8 to 4.10).
 - Enter the access code if access protection is activated (look at ch. 2.9)
 - Press the buttons <Down> and <OK> simultaneously and you will reach the menu level "global"
 - Scroll down until you reach the menu item "structure", press <OK> twice
 - set the parameter "SSK" to 1 (which means SSK is present)
 - Press the buttons <+> and <OK> simultaneously and you will reach the menu item "interface"
 - Go to menu item "SSK" press <OK>
 - Go to menu item "general characteristic values" press <OK>
 - Set the parameter active = 1. Now the controller can communicate via the interface card SSK, not anymore, however, via the front-sided service interface. They both exclude themselves mutually (look at ch. 5.7)
 - Go back to the menu item "SSK" press <OK>
 - Go to menu item "modem" press <OK>
 - Set the parameter active = 1 if the communication via a modem is requested.
 - Set the parameter "modemTyp" = 2 if the controller is supposed to dial the R+S control station by himself, if an alarm occurs. In this case, the telephone numbers telNoBMS and telNoOwn must be entered.
 - Go back to the menu item "SSK" press <OK>
 - Go to menu item "bus" press <OK>
 - Set the parameter active = 1, if bus operation via the R+S Bus is requested. The controller bus address has to be entered into the parameter contrAddr

5.1.2 CAN-interface

If the interface card RU9S.C or RU9S.CS is present (look at ch. 3.3) to connect R+S CAN-remote control units, the controller has to be initialised as follows:

- Enter the access code if access protection is activated (look at ch. 2.9)
- Press the buttons <Down> and <OK> simultaneously and you will reach the menu level "global"
- Scroll down until you reach the menu item "structure" press <OK> twice
- Set the parameter "numOfCAN" to 2 (that means maximum 2 CAN-Bus-members)

For further initialisations look at ch. 5.2.

5.1.3 M-Bus interface

If the interface card RU9S.M is present (look at ch. 3.3) to connect M-Bus heat meters, the controller has to be initialised as follows:

- Enter the access code if access protection is activated (look at ch. 2.9)
- Press the buttons <Down> and <OK> simultaneously and you will reach the menu level "global"
- Scroll down until you reach the menu item "structure" press <OK> twice
- Set the parameter "numOfMBus" to 2 (that means maximum 2 M-Bus members)

For further initialisations look at ch. 5.2.

5.2 system diagram

With the function "system diagram" an automatic selfparameterization of the controller is carried out during the initial startup. According to the chosen system diagram (see Operating Manual 9X UNIT kompakt, part 2) all input and output terminals are allocated automatically in accordance with the terminal diagram; all important controller functions are activated and initialised automatically. The R+S CAN-remote control unit will be initialised automatically, if requested. The controller is then immediately fully operative if the field units (motor, pump, sensor...) where connected according to the terminal diagram. Naturally the automatically made parameter setting can be modified or changed manually. In the factory setting, there is usually no system diagram loaded, that means, that the control programs are not active and running. If the loading of the system diagram is repeated, all previous parameter settings will be lost.

This is how you load a system diagram:

- Select the desired system diagram (look at Operating Manual 9X UNIT kompakt, part 2)
- Enter access code if the access protection is activated (look at ch. 2.9)
- Press the buttons <Down> and <-> simultaneously and you will reach the menu level "system diagrams".
- Set the parameter "sysDiagram" to the number of the selected system diagram (for example ""61"")
- Set the parameter "burner" to the desired burner type (1 = one-stage, 2 = two-stage, 3 = modulating) (only with burner controllers)
- If the domestic warm water circuit is supposed to be controlled via a R+S CAN-remote control unit, please enter the item number of the desired remote control at the parameter "CAN-DHW". You will find a number of possible entries in appendix C.
- If desired, a CAN-remote control unit or a CAN-room sensor MR-C(S) can be used with the heating circuit 1 and/or heating circuit 2. Enter the item number of the desired CAN unit in the parameter "CAN-HC1" and/or "CAN-HC2". Please remember, that a maximum number of two CAN-units is permitted. The CAN-unit 1 is always assigned to the heating circuit 1, the CAN-unit 2 is always assigned either to the heating circuit 2 or the domestic warm water circuit.
- If you want to assign a M-Bus heat meter to the district heating circuit you have to set the parameter "MbusTyp" to the desired type. (Look at appendix D)
- Setting the parameter "MBusLim" = 1 will activate the function "capacity limitation with M-Bus"
- The design capacities of the burner/district heating circuit, the domestic warm water circuit and the heating circuit have to be entered in the parameter "Q-confBu", "Q-confDH", ... and so on. To enter the right values is very important for the exact function of the "energy manager. (Releasing the required capacity of heat from the heat source, 15-stage load drop with priority, domestic hot water priority)
- If the design capacities are not known during the initialisation, the factory settings should be maintained.
- Initiate a cold start by pressing the buttons <down>, <up> and <Reset> simultaneously.
- Answer the question "delete all parameters" by pressing the <ok> button. enter the highest access code. On the display you will see the message "diagram xx loaded". Press the <ok>button and the controller will start working. The system diagram is loaded. If you press the <?>
 button while the standard display is visible you can see the type of controller and the current
 system diagram. For further details of the system diagram see appendix A.

RU 9X

5.3 further adjustments

The following adjustments must be carried out after the loading of the system diagram:

- set system time and date (look at ch. 2.10 and 2.11)
- set occupancy times (look at ch. 2.12)
- set the set points (look at ch. 2.2)
- The heating circuits are set to 70/55°C using radiators. If you have a different heating system you have to adjust the parameters for every heating circuit in the following way:
- Look at the possible choices in appendix B.
- Enter the access code (look at ch. 2.9).
- Go to "Heating circuit 1"-"Service" "system data" and change the parameter "heatSystTyp" to the selected number (see appendix B)
- To adapt the controller to the special condition of system you can make further adjustments, for example assignment of other sensors or motors, activation of additional functions, etc.(look at the system manual DDC-Regel UNIT **9X kompakt**).

5.4 functional test

5.4.1 sensors

The measured values of all connected sensors are shown in the menu "survey" (look at ch. 2.5). Missing, intermittent or short-circuited entries will produce error messages on the display. Please eliminate all errors caused by faulty cables. If there are sensors, that are not used, according to the system diagram, you have to deactivate them in the menu "control circuit" (button in the first row = burner/district heating/heating/DHW circuit) - "service" - "ass. input" by setting the parameter to 0. Or you can deactivate the error message for this sensor in the menu "configuration" – "input" by setting the parameter "termxx sensor/message" to 0.

After completing the functional test no error messages should be visible on the display.

5.4.2 pumps, valves, motors and mixers

To determine the proper function of all pumps, valves, motors and mixers via the manual operation you have to:

Turn the operation mode switch onto "manual operation"

- Enter the access code if access protection is activated (look at ch. 2.9)
- In the menu "control circuit" (button in the first row = burner/district heating/heating/DHW circuit) "manual oper." "valve", "pump", etc. the parameter "active manOp" has to be set to 0,1,... (On/Off, Oben/Close/Halt etc.) depending on the order you want to give to the unit. (press the <?>-button for more information)
- Check out the unit, if the command is carried out correctly.
- turn the "operating mode switch" back to "automatic". The manual operation is deactivated.

5.5 trend

To proof the correct function of the controller you can activate an automatic trend logging of selected sensor values. The values are stored in the memory of the RU **9X kompakt**. They can be displayed on the display of the controller or can be transmitted to the PC via the software R+S TPO and printed on your printer.

A maximum of 5 sensors can be selected. For every sensor up to 50 measured values can be recorded. If the memory for one sensor is fully loaded, the controller starts to save the values at the beginning of the memory, so the value which is longest in memory is overwritten.(round-robin) The pointer to the latest (freshest) value is stored in the parameter "curNumReco". This is how the trend logging is started:

- Enter the access code, if access protection is activated (look at ch. 2.9)
- By pressing the buttons <Up> and <-> simultaneously you reach the menu "Trend"
- Select the desired trend number with the cursor buttons and confirm by pressing <OK>
- Enter the terminal number of the sensor you would like to record at the menu "trendx" "service" "ass. input".(for example "17". Only analog inputs can be recorded!)
- Go back to the menu "trendx" "function" and set the parameter "active" = 1. You can then set the recording interval "intReco" to the desired value (in minutes).
- Now you can look at the recorded values in the menu "trendx" "S/I/O"" "trend".

5.6 service interface

The basic installation of the controller can also be carried out via the service interface at the front of the controller. To do so, please proceed as follows:

- Open and remove the front door of the controller
- Remove front scale of the controller (lift front scale with a small screwdriver and pull, look at illustration 3-1)
- Start your computer with the software R+S "TP0 WIN" or "GLT-WIN". Connect the PC, using a free COM-Port, with the serial interface at the front of the controller with the R+S "RU 9S.Adap" (item-nr. 1410 1000)(look at ch. 1.3).
- The SSK interface must be deactivated, otherwise communication via the service interface is not possible.(look at ch. 5.1.1).
- You can now change parameters either by executing the function "remote control" in your pcprogram (TP0-WIN or GLR-WIN) or by executing the function "project management". With the function "project management" you can download and upload parameter groups or whole backup images of controllers. This function is often used to make a backup of your controller configuration.
- When you are finished with the changes on your controller, activate the SSM (if necessary), remove the PC-Adapter and reassemble the front scale and the front door.

6 maintenance

The controller shows "System Error! battery empty!" if the battery should be changed. The battery should then be changed immediately, otherwise the correct time and date will be lost, if the operating voltage fails.

For change of the battery look at ch. 3.4.

7 error messages

The controller recognizes automatically a great number of error conditions and shows these errors on the display or sends a message to the R+S control station. Following error messages can occur:

Error messages of the control programs:

error message	explanations
FP-system	frost protection, flow temperature dropped below frost limit
FP-stor	frost protection of storage tank, storage tank temperature dropped below frost limit
BP-FrRoom	frost protection room, room temperature dropped below frost limiterature
Xw-flow	max. deviation of flow temperature exceeded
Xw – room	max. deviation of room temperature exceeded
Xw-stor	max. deviation of storage tank temperature exceeded
Xw-storFl	max. deviation of storage tank flow temperature exceeded
Xw-loadFl	max. deviation of loading flow temperature exceeded
ULimStor	upper limit of storage tank temperature exceeded
ULimColl	upper limit of solar collector temperature exceeded
ULimFlow	upper limit of flow temperature exceeded
ULimExhaus	upper limit of exhaust temperature exceeded
ThermDis	thermal disinfection mot successful
TI-system	system error message (input of TI-system is active)
TI-inp	input error (Short circuit or break in cable)

System error messages:

error message	explanations
broken sensor cable at term.xx	sensor power circuit xx open
short circuit at term.xx	sensor power circuit xx short-circuited
battery empty !	change battery, power backup of the clock is not guaranteed any-
	more
battery almost empty	battery must be changed soon
MBUS	M-Bus faulty
CAN	CAN-Bus faulty
global overload	real-time error

The error message disappears if the reason for error was eliminated.

8 technical data

operating voltage $230 \vee \pm 10 \% / 5$ power consumption $5 \vee A$ (without loambient temperature $+5 \text{ to } +40^{\circ}\text{C}$ (in $-20 \text{ to } +65^{\circ}\text{C}$ (tr		50 hertz oad) operation) ransportation and storage)			
protection classII of EN 60730-type of protection:IP 54 EN 60529		9 (at the front, when installed in a steel case)			
CE-Certification EN 50081 / DIN EN 50081 EN 50082 / DIN EN 50082 EN 55022 class B IEC 801-2 IEC 801-3 IEC 801-4 IEC 65 A / 77B (SEC) 120	IP 40 EN 60529 (normally) given due to the conformity with following standards standard for radiation and interference standard for interference immunity radio interferences interference immunity against discharge of static current to the casing interference immunity against transmitted radio frequency interference immunity against transient bursts on signal-, con- trol- or network cables interference immunity against high-energy transient (surge) on network interfaces, power outputs and sensor cables.				
dimension installation	151 mm x 98 mm x 160 mm, mounting depth 118 mm wall mounting, panel-mounting or installations on a mounting plate				
preservation time of the data at power failure Backup battery for timer Power reserve Min. time interval	10 years BAT (item-nr. 1 100 days withou 1 min	220 1000, chang ut change of the	geable) battery)		
terminal	terminals up to	2,5 mm2 (single 1,5 mm2 (more	e cable) than one cable)		
Outputs		RU 98.xx-xxx	RU 96.xx-xxx	RU 94.xx-xxx	
pumps and valves terminal 3-9: relay outputs 230VAC / 1	A (Ind.) for A (ind.) for	3	3	1 2	
pumps and valves, protection class II EN 60730 terminal 1: relay output 230VAC / 1 A (ind.) for burner release or pumps, protection class II EN 60730, mini-		1	1	1	
terminal 23-24: transistor outputs (OC) 24 VDC / 10 mA *)			1		
Max. amounts of switching of the relay outputs		actuator: burner: pumps:	800 000 300 000 30 000		
Inputs					
R+S M-sensor -60 to +160°C, 0 to 10 V Pt 1000 (modified) or EK input 12 VDC/	, Poti 10 kOhm, 1,2 mA	6	6	6	
R+S M-sensor -60 to +100°C counter input 20 V / 20 mA / min. 40 ms **)		1	1 1	1	

*) transistor outputs (Open-collector outputs) for the direct control of electronic pumps, (watch for overcurrent!)

**) only with controllers without M-Bus interface.

Inputs/outputs

0 R+S M-sensor -60 to +100°C or Transistor outputs (OC) 24 VDC / 10 mA *) RU 98.1x-xxx RU 96.1x-xxx RU 94.1x-xxx 2

Interfaces

service interface at the front of the controller for personal computer or printer, connection only possible with adapter cable RU 9S.Adap

RU 9S.SSK	Interface card for personal computer, modem, R+S bus (RS232, RS485)
RU 9S.C	CAN-Bus interface card (low speed) for max. 2 remote control units. R+S Fxx- C, max. length of cable: 25 m. If you connect 2 remote control units a bus power supply 105.SVB is necessary.
RU 9S.CS	CAN-Bus interface card (high speed) for max. 2 remote control units. R+S Fxx-C, max. length of cable: 150 m. If you connect 2 remote control units a bus power supply 105.SVB is necessary.
RU 9S.M	M-Bus interface card for max. 2 M-Bus heat meters. The need for an external bus power supply depends on the model and the amount of M-Bus meters connected

*) transistor outputs (Open-collector outputs) for the direct control of electronic pumps. (watch for overcurrent!!) Appendix:

Appendix A: factory setting

After setting the system diagram (look at ch. 5.2) following functions are active.

ParNr.	Menu	active functions	Remarks
1.3.7	global - service	projectmanagement	recording is active
2.1	timer	occupation times are set to: mo-fr, 6:00-22:00	
2.2.3.2.7	district heating circuit (only with RU 9x.1F-xxx) - regu- lating	return temperature limita- tion	normally = 60° C, with domes- tic hot water loading = 80° C, in system diagram $66 = 45^{\circ}$ C
2.2.3.7.1	district heating circuit (only with RU 9x.1F-xxx) – energy management	capacity rating	
2.2.3.7.2	district heating circuit (only with RU 9x.1F-xxx) – energy management	capacity boost	
2.2.6.4/5	district heating circuit (only with RU 9x.1F-xxx) - service	Assignment of the input and output terminals	according to the system dia- gram
2.3.1.3.2.1	energy manager -heatHe	DHW circuit determines system flow temperature	in a system diagram without DHW valve
2.3.1.3.2.1	energy manager -heatHe	load drop(DHW priority)	except in case of DHW flow system
2.3.1.6.2	energy manager - EM-strat.	DHW circuit primary / secondary fed	according to the system dia- gram
2.4.2.2	DHW circuit - Set points	boost	according to the system dia- gram
2.4.3.2.4	DHW circuit - regulating	remote control	according to the system dia- gram
2.4.3.2.6	DHW circuit - regulating	controller parameter	according to the system dia- gram
2.4.3.3.3	DHW circuit - controlling	start / switchOff-delay	according to the system dia- gram
2.4.3.3.3	DHW circuit - controlling	release of circpump	in the case of DHW flow sys- tem
2.4.3.4	DHW circuit - monitoring	operating time	
2.4.3.7.2	DHW circuit – energy man- agement	max demand of flow temp. maxDemFI-T	in the case of DHW flow sys- tem
2.4.6.1	DHW circuit - system data	Type of system	according to the system dia- gram
2.4.6.4/5	DHW circuit - service	assignment inputs / out- puts	according to the system dia- gram
2.4.6.6	DHW circuit - service	assignment of CAN re- mote control	according to the system dia- gram
2.5.1.3.2.7	heating circuit 1 – regulating	remote control	according to the system dia- gram
2.5.1.3.2.9	heating circuit 1 – regulating	room compensation	when room sensor is as- signed
2.5.1.3.3.3	heating circuit 1 – control- ling	pump switch off delay	
2.5.1.3.4.5	heating circuit 1 – monitor- ing	operating time	
2.5.1.3.5.1	heating circuit 1 – calcu- late/optimise	switch on optim.	
2.5.1.3.5.5	heating circuit 1 – calcu- late/optimise	property manager	
2.5.1.3.5.6	heating circuit 1 – calcu- late/optimise	delayed outsideTemp	

ParNr.	Menu	active functions	Remarks
2.5.1.3.7.3	heating circuit 1 – energy management	load drop (DHW priority)	
2.5.1.6.1	heating circuit 1 – system data	controller / pump output	according to the system dia- gram
2.5.1.6.1	heating circuit 1 – system data	heating system: radiators (70/55)	
2.5.1.6.2	heating circuit 1 – control strategy	with room sensor	
2.5.1.6.4/5	heating circuit 1 – service	assignment inputs / out- puts	according to the system dia- gram
2.5.1.6.6	heating circuit 1 – service	assignment of CAN re- mote control	according to the system dia- gram
2.5.2.3.2.7	heating circuit 2 – regulating	remote control	according to the system dia- gram
2.5.2.3.2.9	heating circuit 2 – regulating	room compensation	when room sensor is as- signed
2.5.2.3.3.3	heating circuit 2 – control- ling	delay of pump switch off	<u> </u>
2.5.2.3.4.5	heating circuit 2 - monitoring	operating time	
2.5.2.3.5.1	heating circuit 2 – calcu- late/optimise	switch on optim.	
2.5.2.3.5.5	heating circuit 2 - calcu- late/optimise	property manager	
2.5.2.3.5.6	heating circuit 2 - calcu- late/optimise	delayed outsideTemp	
2.5.2.3.7.3	heating circuit 2 – energy management	load drop (DHW priority)	
2.5.2.6.1	heating circuit 2 - system data	controller / pump output	according to the system dia- gram
2.5.2.6.1	heating circuit 2 - system data	heating system: radiators (70/55)	
2.5.2.6.2	heating circuit 2 – control strategy	with room sensor	
2.5.2.6.4/5	heating circuit 2 – service	assignment inputs / out- puts	according to the system dia- gram
2.5.2.6.6	heating circuit 2 – service	assignment of CAN re- mote control	according to the system dia- gram
3.2	interface - SSK	SSK-S	SSK not active
3.4	interface - M-Bus	M-Bus 1	providing it was activated during selection of a system diagram(5.2)
3.5	interface - CAN	CAN-Bus 1 and 2	providing it was activated during selection of a system diagram(5.2)
4.1	configuration - inputs	Error messages to all assigned inputs	

Appendix B: type of heating system

With **heatSystTyp** you can select the type of heating system. This will lead to an automatic configuration of the following parameters:

- the heating curve will be adjusted according to the selected heating system (radiator exponent, design flow and return temperature).
- flow temperature limitation
- max. temperature demand

When the system diagram was selected heatSystTyp will be set to 1 (radiators).

If you want to select other values for the preconfigured parameters you should select heatSystTyp=0. You can than adjust the heating curve to your own special needs by either setting the parameter Rr-Exp and the design temperatures or by setting each point of the heating curve manually. (look at the system manual ch. 3.2.3 – functions, regulating, heating curve and 3.7.2 functions - energy management - heat).

heatSystTyp	Rr-Exp	desFI-T 3.7.2.5	desRetT 3.7.2.6	maxFI 3.2.13.3	maxDemFl
Parameter-no.	0.1.9	3.2.3.2			3.1.2.0
0 free definition			Manual input		
1 radiators	1,3	70°C	55°C	80°C	80°C
2 convectors	1,4	70°C	55°C	80°C	80°C
3 underfloor heat-	1,1	45°C	35°C	50°C	50°C
ing					
4 air heaters	1,1	90°C	70°C	90°C	90°C
5 ceiling heating	1,6	60°C	50°C	70°C	70°C

Appendix C: CAN-remote controls and CAN-room sensors

Following CAN-units can be used with the RU 9X kompakt:				
model	item-nr.	Description		
MR-C	2104-1210	room temperature sensor 10 40°C with CAN-Bus interface, short dis- tance wall mounting		
MR-CS	2104-1220	room temperature sensor 10 40°C with CAN-Bus interface, long dis-		
MR-C/U	2104-2210	room temperature sensor 10 40°C with CAN-Bus interface, short dis-		
MR-CS/U	2104-2220	room temperature sensor 10 40°C with CAN-Bus interface, long dis-		
FR1-C	3401-1210	Remote control with room temperature sensor 10 40°C, button, 4 LEDs, short distance, wall mounting		
FR1-CS	3401-1220	Remote control with room temperature sensor 10 40°C, button, 4 LEDs, long-distance area, wall mounting		
FR2-C	3401-1230	remote control with controller, room temperature sensor 10 40°C, short distance wall mounting		
FR2-CS	3401-1240	remote control with potentiometer, room temperature sensor 10 40°C,		
FR3-C	3401-1250	remote control with potentiometer, room temperature sensor 10 40°C,		
FR3-CS	3401-1260	remote control with potentiometer, room temperature sensor 10 40°C, button, 4 LEDs, long distance area, wall mounting		
FTR1-C	3401-3210	remote control with room temperature sensor 10 40°C, button, LED,		
FTR1-CS	3401-3220	remote control with room temperature sensor 10 40°C, button, LED,		
FTR2-C	3401-3230	remote control with potentiometer, room temperature sensor 10 40°C, button LED short distance wall mounting		
FTR2-CS	3401-3240	remote control with potentiometer, room temperature sensor 10 40°C, button LED long-distance area, wall mounting		
FDR1-C	3401-4210	remote control with room temperature sensor 10 40°C, counter, LED, day/night/automatism_short distance_wall mounting		
FDR1-CS	3401-4220	remote control with room temperature sensor 10 40°C, counter, LED, day/night/automatism_long-distance area_wall_mounting		
FDR2-C	3401-4230	remote control with potentiometer, room temperature sensor 10 40°C, counter LED day/night/automatism short distance wall mounting		
FDR2-CS	3401-4240	remote control with potentiometer, room temperature sensor 10 40°C, counter LED, day/night/automatism, long-distance area, wall mounting		
FR2-C/U	3402-1230	remote control with potentiometer, room temperature sensor 10 40°C, short distance for flush socket		
FR2-CS/U	3402-1240	remote control with potentiometer, room temperature sensor 10 40°C, long-distance area, for flush socket		
FR3-C/U	3402-1250	remote control with potentiometer, room temperature sensor 10 40°C, button 41 FDs short distance for flush socket		
FR3-CS/U	3402-1260	remote control with potentiometer, room temperature sensor 10 40°C, button 41 FDs long-distance area for flush socket		
FTR2-C/U	3402-3230	remote control with potentiometer, room temperature sensor 10 40°C, button LED short distance for flush socket		
FTR2-CS/U	3402-3240	remote control with potentiometer, room temperature sensor 10 40°C, button, LED, long-distance area, for flush socket		
FDR2-C/U	3402-4230	remote control with potentiometer, room temperature sensor 10 40°C, day/night/automatism counter, short distance, for flush socket		
FDR2-CS/U	3402-4240	remote control with potentiometer, room temperature sensor 10 40°C, day/night/automatism counter, long-distance area, for flush socket		

Appendix D: M-Bus heat meter

Following M-Bus heat meters can be used with your RU 9X kompakt:

"MBusType"	Heat meter	Manufacturer	Remarks
10	Pollustat	SPX	
61	Delta Kompakt II	Techem	no capacity limitation
70	Multidata S1	Zenner	no capacity limitation, the use of a bus power supply 105.SVB is necessary (look at ch. 4.7)
71	Multidata S1	Zenner	short protocol, adjustable
90	2WR4	Siemens	

Appendix E: drilling template for wall mounting

RICCIUS+SOHN

Regelungstechnik und Gebäudeautomation GmbH Haynauer Str. 49 12249 Berlin Telephone: +49 30 779 94-0 Telefax: +49 30 779 94-79 Homepage: <u>www.riccius-sohn.com</u> email: postoffice@riccius-sohn.com